
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 647

High Speed Double Precision Floating Point

Multiplier

Addanki Purna Ramesh
1
, Rajesh Pattimi

2

Department of ECE, Sri Vasavi Engineering College, Pedatadepalli, Tadepalligudem, India
1, 2

ABSTRACT: In this paper we describe an implementation of high speed IEEE 754 double precision floating point multiplier targeted

for Xilinx Virtex-6 FPGA. Verilog is used to implement the design. The multiplier implement area optimized design, high speed

operation with latency of seven clock cycles, it handles the overflow, underflow cases, and the multiplier support truncation rounding

mode was implemented. The multiplier was verified against Xilinx floating point multiplier core.

 Keywords: binary floating point, multiplication, FPGA.

I INTRODUCTION

 Floating point numbers are one possible way of

representing real numbers in binary format; the IEEE 754

[3] standard presents two different floating point formats,

Binary interchange format and Decimal interchange

format. Multiplying floating point numbers is a critical

requirement for DSP applications involving large dynamic

range. This paper focuses on double precision floating

point binary interchange format. Figure 1 shows the IEEE

754 double precision floating point binary format

representation; it consists of a one bit sign (S), an eleven

bits exponent (E), and a fifty two bits fraction (M or

Mantissa). An extra bit is added to the fraction to form

what is called the significand1. If the exponent is greater

than 0 and smaller than 2047, and there is 1 in the MSB of

the significand then the number is said to be a normalized

number, Significand is the mantissa with an extra MSB bit.

Figure . 1 IEEE double precision floating point format

Z = (-1
S
) * 2

(E - Bias)
 * (1.M)

Where M = m51 2
-1

 + m50 2
-2

 + m49 2
-3

+…+ m1 2
-51

+ m0 2
-52

 Bias = 1023.

 Multiplying two numbers in floating point format is

done by 1- calculating the sign by XORing the sign of the

two numbers, 2- adding the exponent of the two numbers

then subtracting the bias from their result, and 3-

multiplying the significand of the two numbers. In order to

represent the multiplication result as a normalized number

there should be 1 in the MSB of the result (leading one).

II. FLOATING POINT MULTIPLICATION

ALGORITHM

 As stated in the introduction, normalized floating point

numbers have the form of Z = (-1
S
) * 2

(E - Bias)
 * (1.M). To

multiply two floating point numbers the following is done:

1. Obtaining the sign; i.e. Sa xor Sb

2. Adding the exponents; i.e. (E1 + E2 – Bias)

3. Multiplying the significand; i.e. (1.M1*1.M2)

4. Placing the decimal point in the significant result

5. Normalizing the result; i.e. obtaining 1 at the MSB of the

results significand

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

III. HARDWARE OF FLOATING POINT

MULTIPLIER

 The black box view of floating point multiplier is

shown in figure 2.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 648

Figure .2 Black box view of floating point multiplier

A. Sign bit calculation

 Multiplying two numbers results in a negative sign

number if one of the multiplied numbers is of a negative

value. By the aid of a truth table we find that this can be

obtained by XORing the sign of two inputs.

B. exponent addition

 This unsigned adder is responsible for adding the

exponent of the first input to the exponent of the second

input and subtracting the Bias (1023) from the addition

result (i.e. A_exponent + B_exponent - Bias). The result of

this stage is called the intermediate exponent. The add

operation is done on 8 bits, and there is no need for a quick

result because most of the calculation time is spent in the

significand multiplication process (multiplying 53 bits by

53 bits); thus we need a moderate exponent adder and a fast

significand multiplier.

 An 11-bit ripple carry adder is used to add the two

input exponents. As shown in Figure 3 a ripple carry adder

is a chain of cascaded full adders and one half adder; each

full adder has three inputs (A, B, Ci) and two outputs (S,

C). The carry out (C) of each adder is fed to the next full

adder (i.e each carry bit "ripples" to the next full adder).

The addition process produces an 11 bit sum (S10 to S0) and

a carry bit (C11). These bits are concatenated to form a 12

bit addition result (S12 to S0) from which the Bias is

subtracted.

Figure. 3 Ripple Carry Adder

 The Bias is subtracted using an array of ripple borrow

subtractors. A normal subtractor has three inputs (minuend

(S), subtrahend (T), Borrow in (Bi)) and two outputs

(Difference (R), Borrow out (B)). The subtractor logic can

be optimized if one of its inputs is a constant value which

is our case, where the Bias is constant (1023|10 =

001111111111|2).Table I shows the truth table for a 1-bit

subtractor with the input T equal to 1 which we will call

“one subtractor (OS)”. Table II shows the truth table for a

1-bit subtractor with the input T equal to 0 which we will

call “zero subtractor (ZS)”.

Table I.

1-Bit Subtractor with the input T = 1

S T Bi Difference(R) B

0 1 0 1 1

1 1 0 0 0

0 1 1 0 1

1 1 1 1 1

Table II

 1-Bit Subtractor with the input T = 0

S T Bi Difference(R) B

0 0 0 0 0

1 0 0 1 0

0 0 1 1 1

1 0 1 0 0

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 649

 Figure 4 shows the Bias subtractor which is a chain of

10 one subtractors (OS) followed by 2 zero subtractors

(ZS); the borrow output of each subtractor is fed to the next

subtractor. If an underflow occurs then Eresult < 0 and the

number is out of the IEEE 754 single precision normalized

numbers range; in this case the output is signaled to 0 and

an underflow flag is asserted.

Figure .4 Ripple Borrow Subtractor

IV. UNDERFLOW/OVERFLOW DETECTION

Overflow/underflow means that the result’s exponent

is too large/small to be represented in the exponent field.

The exponent of the result must be 11 bits in size, and must

be between 1 and 2046 otherwise the value is not a

normalized one. An overflow may occur while adding the

double precision floating point multiplier code was a

checked using Design Xilinx targeting on Virtex-6

xc5vlx110-3ff1760. Figure 5 shows the simulation results

of high speed double precision floating point multiplier of

the bias; resulting in a normal output value (normal

operation). An underflow may occur while subtracting the

bias to form the intermediate exponent. If the intermediate

exponent < 0 then it’s an underflow that can never be

compensated. If the intermediate exponent = 0 then it’s

an underflow that may be compensated during

normalization by adding 1 to it. Table III shows the

normalization effect on result’s exponent and

overflow/underflow detection.

Table III
Normalization effect on result’s exponent and overflow/underflow

detection
Eresult Category Comments

-1021≤ Eresult

<0

Underflow Can’t be compensated during

normalization

Eresult =0 Zero May turn to normalized number
during normalization (by

adding 1 to it)

1≤ Eresult
<2046

Normalized
number

May result in overflow during
normalization

2047≤ Eresult Overflow Can’t be compensated

When an overflow occurs an overflow flag signal goes

high and the result turns to ±Infinity (sign determined

according to the sign of the floating point multiplier

inputs). When an underflow occurs an underflow flag

signal goes high and the result turns to ±Zero (sign

determined according to the sign of the floating point

multiplier inputs). Denormalized numbers are signaled to

Zero with the appropriate sign calculated from the inputs

and an underflow flag is raised. Assume that E1 and E2 are

the exponents of the two numbers A and B respectively;

the results exponent is calculated by (1).

Eresult = E1 + E2 – 1023 ------------- (1)

 E1 and E2 can have the values from 1 to 2046;

resulting in Eresult having values from -1021 (2-1023) to

3069 (4092-1023); but for normalized numbers, Eresult can

only have the values from 1 to 2046.

V. RESULTS

 The whole multiplier (top unit) was tested against the

Xilinx floating point multiplier core generated by Xilinx

core and an efficient implementation of floating point

multiplier in [1]. Xilinx core and multiplier in [1] was

customized to have two flags to indicate overflow and

underflow, and to have a maximum latency of three cycles.

Xilinx core implements the “round to nearest” rounding

mode but multiplier doesn’t support rounding modes.

A test bench is used to generate the stimulus and

applies it to the high speed double precision floating point

VI. CONCLUSIONS

This paper presents an implementation of a floating

point multiplier that supports the IEEE 754-2008 binary

interchange format. The design implemented on a Xilinx

Virtex6 xc6vlx110-3ff1760 FPGA it achieves with a

latency of seven clock cycles, handles the overflow,

underflow cases, and this multiplier support truncation

rounding mode was implemented.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 650

Figure 5 Simulation results of high speed double precision floating point multiplier

REFERENCES

[1] M.Al-Ashrafy, A.Salem and W.Anis,“An Efficient

Implementation of Floating Point Multiplier ”

Electronics Communications and Photonics

Conference(SIECPC) 2011 Saudi International, pp.1-

5,2011.

[2] F.de Dinechin and B.Pasca. Large multipliers with

fewer DSP blocks.In Field Pro- grammable Logic and

Applications. IEEE, Aug. 2009.

[3] IEEE 754-2008, IEEE Standard for Floating-Point

Arithmetic, 2008.

[4] Patterson, D. & Hennessy, J. (2005), computer

Organization and Design : The Hardware/software

Interface , Morgan Kaufmann.

[5] B. Lee and N. Burgess, “Parameterisable Floating-

point Operations on FPGA,” Conference Record of the

Thirty-Sixth Asilomar Conference on Signals, Systems,

and Computers, 2002

[6] A. Jaenicke and W.Luk, "Parameterized Floating-

Point Arithmetic on FPGAs", Proc. of IEEE ICASSP,

2001, vol. 2, pp. 897-900.

[7]L. Louca, T. A. Cook, and W.H. Johnson,

“Implementation of IEEE Single Precision Floating Point

Addition and Multiplication on FPGAs, ” Proceedings of

83 the IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM‟96), pp. 107–116, 1996.

[8] John G. Proakis and Dimitris G. Manolakis (1996),

“Digital Signal Processing: Principles,.Algorithms and

Applications”, Third Edition.

[9] N. Shirazi, A. Walters, and P.Athanas, “Quantitative

Analysis of Floating Point Arithmetic on FPGA Based

Custom Computing Machines,”Proceedings of the IEEE

Symposium on FPGAs for Custom Computing Machines

(FCCM‟95), pp.155–162, 1995.

[10] B. Fagin and C. Renard, “Field Programmable Gate

Arrays and Floating Point Arithmetic,” IEEE Transactions

on VLSI, vol. 2, no. 3, pp. 365–367, 1994.

