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ABSTRACT: In this paper we describe an implementation of high speed IEEE 754 double precision floating point multiplier targeted 

for Xilinx Virtex-6 FPGA. Verilog is used to implement the design. The multiplier implement area optimized design, high speed 

operation with latency of seven clock cycles, it handles the overflow, underflow cases, and the multiplier support truncation rounding 

mode was implemented. The multiplier was verified against Xilinx floating point multiplier core. 
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I INTRODUCTION 

   Floating point numbers are one possible way of 

representing real numbers in binary format; the IEEE 754 

[3] standard presents two different floating point formats, 

Binary interchange format and Decimal interchange 

format. Multiplying floating point numbers is a critical 

requirement for DSP applications involving large dynamic 

range. This paper focuses on double precision floating 

point binary interchange format. Figure 1 shows the IEEE 

754 double precision floating point binary format 

representation; it consists of a one bit sign (S), an eleven 

bits exponent (E), and a fifty two bits fraction (M or 

Mantissa). An extra bit is added to the fraction to form 

what is called the significand1. If the exponent is greater 

than 0 and smaller than 2047, and there is 1 in the MSB of 

the significand then the number is said to be a normalized 

number, Significand is the mantissa with an extra MSB bit. 

 

 
                                  

Figure . 1 IEEE double precision floating point format 
 

Z = (-1
S
) * 2 

(E - Bias)
 * (1.M)     

Where M = m51 2
-1

 + m50 2
-2

 + m49 2
-3

+…+ m1 2
-51

+ m0 2
-52

  

 Bias = 1023. 

       Multiplying two numbers in floating point format is 

done by 1- calculating the sign by XORing the sign of the  

 

 

two numbers, 2- adding the exponent of the two numbers 

then subtracting the bias from their result, and 3- 

multiplying the significand of the two numbers. In order to 

represent the multiplication result as a normalized number 

there should be 1 in the MSB of the result (leading one). 

 

II. FLOATING POINT MULTIPLICATION 

ALGORITHM 

       As stated in the introduction, normalized floating point 

numbers have the form of Z = (-1
S
) * 2 

(E - Bias)
 * (1.M).   To 

multiply two floating point numbers the following is done: 

 

1. Obtaining the sign; i.e. Sa xor  Sb 

2. Adding the exponents; i.e. (E1 + E2 – Bias) 

3. Multiplying the significand; i.e. (1.M1*1.M2) 

4. Placing the decimal point in the significant result 

5. Normalizing the result; i.e. obtaining 1 at the MSB of the 

results significand 

6. Rounding the result to fit in the available bits 

7. Checking for underflow/overflow occurrence 

 

III. HARDWARE OF FLOATING POINT 

MULTIPLIER 

 The black box view of floating point multiplier is 

shown in figure 2. 
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Figure .2 Black box view of floating point multiplier  

 

A. Sign bit calculation 

        Multiplying two numbers results in a negative sign 

number if one of the multiplied numbers is of a negative 

value. By the aid of a truth table we find that this can be 

obtained by XORing the sign of two inputs. 

B. exponent addition 

       This unsigned adder is responsible for adding the 

exponent of the first input to the exponent of the second 

input and subtracting the Bias (1023) from the addition 

result (i.e. A_exponent + B_exponent - Bias). The result of 

this stage is called the intermediate exponent. The add 

operation is done on 8 bits, and there is no need for a quick 

result because most of the calculation time is spent in the 

significand multiplication process (multiplying 53 bits by 

53 bits); thus we need a moderate exponent adder and a fast 

significand multiplier. 

       An 11-bit ripple carry adder is used to add the two 

input exponents. As shown in Figure 3 a ripple carry adder 

is a chain of cascaded full adders and one half adder; each 

full adder has three inputs (A, B, Ci) and two outputs (S, 

C). The carry out (C) of each adder is fed to the next full 

adder (i.e each carry bit "ripples" to the next full adder). 

The addition process produces an 11 bit sum (S10 to S0) and 

a carry bit (C11). These bits are concatenated to form a 12 

bit addition result (S12 to S0) from which the Bias is 

subtracted. 

 

 

 

 

 

 

 

 
 

Figure. 3 Ripple Carry Adder 
 

       The Bias is subtracted using an array of ripple borrow 

subtractors. A normal subtractor has three inputs (minuend 

(S), subtrahend (T), Borrow in (Bi)) and two outputs 

(Difference (R), Borrow out (B)). The subtractor logic can 

be optimized if one of its inputs is a constant value which 

is our case, where the Bias is constant (1023|10 = 

001111111111|2).Table I shows the truth table for a 1-bit 

subtractor with the input T equal to 1 which we will call 

“one subtractor (OS)”. Table II shows the truth table for a 

1-bit subtractor with the input T equal to 0 which we will 

call “zero subtractor (ZS)”. 

 
Table I.  

1-Bit Subtractor with the input    T = 1 

 

S T Bi Difference(R) B 

0 1 0 1 1 

1 1 0 0 0 

0 1 1 0 1 

1 1 1 1 1 

 
Table II 

 1-Bit Subtractor with the input T = 0 

 

S T Bi Difference(R) B 

0 0 0 0 0 

1 0 0 1 0 

0 0 1 1 1 

1 0 1 0 0 
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  Figure 4 shows the Bias subtractor which is a chain of 

10 one subtractors (OS) followed by 2 zero subtractors 

(ZS); the borrow output of each subtractor is fed to the next 

subtractor. If an underflow occurs then Eresult < 0 and the 

number is out of the IEEE 754 single precision normalized 

numbers range; in this case the output is signaled to 0 and 

an underflow flag is asserted. 
 

 
Figure .4 Ripple Borrow Subtractor 

 

IV. UNDERFLOW/OVERFLOW DETECTION 

Overflow/underflow means that the result’s exponent 

is too large/small to be represented in the exponent field. 

The exponent of the result must be 11 bits in size, and must 

be between 1 and 2046 otherwise the value is not a 

normalized one. An overflow may occur while adding the 

double precision floating point multiplier code was a 

checked using Design Xilinx targeting on Virtex-6 

xc5vlx110-3ff1760. Figure 5 shows the simulation results 

of high speed double precision floating point multiplier of 

the bias; resulting in a normal output value (normal 

operation). An underflow may occur while subtracting the 

bias to form the intermediate exponent. If the intermediate 

exponent < 0 then it’s an underflow that can never be 

compensated. If the intermediate      exponent = 0 then it’s 

an underflow that may be compensated during 

normalization by adding 1 to it. Table III shows the 

normalization effect on result’s exponent and 

overflow/underflow detection. 
 

Table III 
Normalization effect on result’s exponent and overflow/underflow 

detection 
Eresult Category Comments 

-1021≤ Eresult 

<0 

Underflow Can’t be compensated during 

normalization 

Eresult =0 Zero May turn to normalized number 
during normalization (by 

adding 1 to it) 

1≤ Eresult 
<2046 

Normalized 
number 

 

May result in overflow during 
normalization 

2047≤ Eresult Overflow Can’t be compensated 

 

When an overflow occurs an overflow flag signal goes 

high and the result turns to ±Infinity (sign determined 

according to the sign of the floating point multiplier 

inputs). When an underflow occurs an underflow flag 

signal goes high and the result turns to ±Zero (sign 

determined according to the sign of the floating point 

multiplier inputs). Denormalized numbers are signaled to 

Zero with the appropriate sign calculated from the inputs 

and an underflow flag is raised. Assume that E1 and E2 are 

the exponents of the two numbers A and B respectively; 

the results exponent is calculated by (1). 

                                      

Eresult = E1 + E2 – 1023 ------------- (1) 

  E1 and E2 can have the values from 1 to 2046; 

resulting in Eresult having values from -1021 (2-1023) to 

3069 (4092-1023); but for normalized numbers, Eresult can 

only have the values from 1 to 2046.  

 

V. RESULTS 

 

 The whole multiplier (top unit) was tested against the 

Xilinx floating point multiplier core generated by Xilinx 

core and an efficient implementation of floating point 

multiplier in [1]. Xilinx core and multiplier in [1] was 

customized to have two flags to indicate overflow and 

underflow, and to have a maximum latency of three cycles. 

Xilinx core implements the “round to nearest” rounding 

mode but multiplier doesn’t support rounding modes. 

 

A test bench is used to generate the stimulus and 

applies it to the high speed double precision floating point  

 

 

VI. CONCLUSIONS 

This paper presents an implementation of a floating 

point multiplier that supports the IEEE 754-2008 binary 

interchange format. The design implemented on a Xilinx 

Virtex6 xc6vlx110-3ff1760 FPGA it achieves with a 

latency of seven clock cycles, handles the overflow, 

underflow cases, and this multiplier support truncation 

rounding mode was implemented. 
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Figure 5 Simulation results of high speed double precision floating point multiplier 
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